Differential pressure transmitter

Model: SMT2001

Spec. sheet no. SD02-01

Service intended

The high performance pressure transmitter SMT2001 is suitable to measure liquid, gas, or steam flow as well as liquid level, density and pressure.

The key features include quick response, remote set-up using communications, self-diagnostics and optional status output for pressure high/low alarm.

Standard features

Accuracy

±0.05 % of calibrated span. ±0.075 % of calibrated span.

Range limits

1 kPa~3 MPa

Turn down

Adjustable up to 100:1 range ability

Temperature compensation

High sensitivity temperature sensor packaged in the sensor

Isolating diaphragm

Stainless steel 316L Hastelloy C Stainless steel 316L with gold plated Stainless steel 316L with Teflon plated

Measurement medium

Gas, steam and liquid

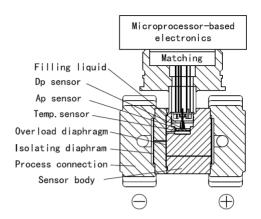
Stability

10 years stability 0.15 % of URL

Output

4 ~ 20 mA with HART protocol

Principle of operation


The differential pressure transmitter includes two functional units: Main unit / auxiliary unit

The main unit includes a sensor and process connection.

The completely welded sensor module is a twin-chamber system with an integral overload diaphragm, an absolute pressure sensor, a temperature sensor and the silicon differential pressure sensor.

The absolute pressure sensor, which is only exposed to the pressure at the high pressure side, acts as a reference value to compensate for the static pressure.

The temperature sensor as a temperature compensated reference value to compensate for the temperature drift.

Main specification

- The differential pressure transmitter utilize the world's leading high stability silicon sensor, the highest Reference Accuracy is ±0.05 %
- Micro-differential pressure transmitter utilize the world's leading dual overload diaphragm patented technology, the highest Reference Accuracy is ±0.05 %
- The differential pressure transmitter's working pressure are 16 MPa, 25 MPa and 40 MPa, the one-way limited pressure up to 16 MPa, 25 MPa and 40 MPa
- The absolute pressure sensor packaged in the differential pressure transmitter, can be used for static pressure measurement, display and the static pressure compensation. The minimum of the static error is ≤ ±0.05 % / 10 MPa
- High sensitivity temperature sensor packaged in the sensor. The minimum of the temperature error is ≤ ±0.04 % / 10K
- Stainless steel 316L and silicone oil filling welded seal structure
- Long stability is ≤ ±0.1% / 3years, 10 years of maintenance-free
- Adjustable up to 100:1 range ability
- The remote seal transmitter utilize ultra-high temperature (400 °C) patented technology.

Performance Specifications

Reference Accuracy of Calibrated Span (includes terminal-based linearity, hysteresis, and repeatability) $\pm 0.075 \%$ If TD > 10 (TD = URL / SPAN), $\pm (0.075 \times TD)\%$

The square root accuracy is 1.5 times of reference accuracy of calibrated span.

Ambient Temperature Effects

-20 ~ 65 °C : ±(0.2 × TD + 0.05)% × Span Every 10 °C is ±0.08 % × Span (TD=1)

-40 \sim -20 °C and 65 \sim 85 °C : \pm (0.3 x TD + 0.1)% x Span

Static Pressure Effects

±(0.05 %URL + 0.075 % Span) / 10 MPa

Overpressure Effects

±0.1 % x Span / 10 MPa

Stability

±0.1 % × Span / 3 years

Power Supply Effects

±0.001 % / 10 V (12~42 V DC)

Explosion protection

Ex db IIC T4/T5/T6 Gb Ex tb IIIC T80 °C / T90 °C / T130 °C Db Ta = -40 to +60 °C Ex d IIC T6

Temperature class Max. process temperature

T4 T130°C 130°C T5 T90°C 90°C T6 T80°C 80°C

Functional Specifications

Span and Range Limits

Sensor	Α	В	С	D	E	
Pressure range (bar)	10 mbar	60 mbar	400 mbar	2.5 bar	30 bar	
Setting limits (offset and span in this range freely adjustable)	-10 10 mbar	-60 60 mbar	-400 400 mbar	-2.5 2.5 bar	-30 30 bar	
Lowest permissible span	1 mbar	2 mbar	4 mbar	25 mbar	0.3 bar	
Demoissible static massesses	70 bar	160 bar	160 bar			
Permissible static pressure (Option)			250 bar			
			400 bar			
Range ability turndown (with respect to the differential pressure range)	10:1	30:1	100:1			

Turn-Down Accuracy

If the Accuracy is (%): 0.075 Turn-down \leq 10:1 \leq ±0.075 % FSO

Turn-down > $10:1 \le \pm [0.075 \text{ x Turn-down}]\% \text{ FSO} \pm 0.075 \%$

Turn-down = Nominal Pressure Range / Adjusted

Zero Adjustment Limits

Zero can be fully elevated or suppressed, within the lower and upper range limits of the capsule.

External Zero Adjustment

External zero is continuously adjustable with 0.01 % incremental resolution of span. Re-range can be done locally using the range setting switch.

Mounting Position Effects

Rotation in diaphragm plane has no effect. Tilting up to 90° will cause zero shift up to 0.4 kPa which can be corrected by the zero adjustment.

Output

2 wire 4~20 mA DC output with digital communications, linear or square root programmable. HART FSK protocol are superimposed on the 4~20 mA DC signal. Output range: 3.9 mA to 20.5 mA.

Failure Alarm (The mode can be selected)

Low Alarm Mode (Min): 3.6 mA High Alarm Mode (Max): 21 mA

Alarm Off (Keep): Keep the effective value before the fault.

- * Complient with NAMUR NE-43
- * Note: The standard setting of failure alarm is High Mode.

Response Time

The amplifier damping constant is 0.1 sec.

The sensor damping constant is 0.1~1.6 sec, it depends on the range and range compression ratio. Amplifier damping time constant is adjustable from 0.1 to 60 sec by software and added to response time.

Warm Up Time

< 15s

Permissible Temperatures

Environment / storage without display : -40 to 85 °C with display : -20 to 65 °C Media wetted parts /Filled oil : -40 to 100 °C (Info: +125°C short time, max. 30 min.)

Working Pressure Limits (Silicone oil)

Maximum working pressure: 16 MPa (Option: 25 and 40 MPa)

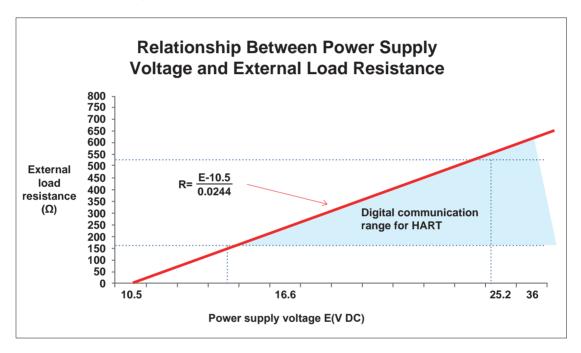
One-way limited pressure

The maximum one-way limited pressure is maximum working pressure.

HART digital communication and 4 to 20 mA output Power Supply

The transmitter operates from 12 to 42 V DC with no load and is protected against reverse polarity connection Minimum operating voltage increase to 12 V DC with surge protector

Ripple


20 mV max on a 250 Ω load as per HART specifications.

Load limitations

4 to 20 mA and HART total loop resistance :

R (kΩ) =
$$\frac{\text{Supply voltage - min. operating voltage (V DC)}}{22 \text{ mA}}$$

A minimum of 250 Ω is required for HART communication.

Supply and Load Requirements

24 VDC supply, R≤(Us-12 V) / Imax k Ω , Imax = 23 mA.

Maximum voltage limited: 42 VDC

Minimum Voltage limited: 12 VDC without LCD display Minimum Voltage limited: 15 VDC with LCD display

250 Ω to 600 Ω for digital communication

Electrical Protection

Short -circuit protection is permanent.

Reverse polarity protection is not damage, but also is no function.

Electrical Connection

The electrical connection is made via cable entry M20x1.5.

The screw terminals are suitable for wire cross-sections up to 2.5 mm².

Process Connection

Flange with fixing thread 7/16-20 UNF and 1/4-18 NPT female thread on both sides.

Electromagnetic field

Meets all the requirements of EN 61326 and NAMUR NE-21.

Load

Within load/voltage specified limits the total effect is negligible.

Install

The transmitter housing can be rotated about 360 degrees relative to the transmitter module without affecting the performance and internal wiring.

Transmitter can be operated Through the PC machine or notebook computer via HART modem. HART modem can be connected in parallel to the signal circuit at arbitrary point.

The HART modem communicates with the transmitter through an AC signal superimposed on the 4~20 mA output signals. This modulation does not change in the mean values, so does not affect the measurement signal.

Physical Specifications

Sensor Body

Stainless steel 316SS

Isolating Diaphragm

Stainless steel 316L Hastelloy C Gold plated on 316L Teflon Plated on 316L

Nuts and Bolts

stainless steel 304 / 1.4301 Carbon steel galvanized (Static pressure 400 bar)

Process Connection

Female thread 1/4" - 18 NPT / fixing 7/16 UNF Oval flange ½" NPT Female thread Others

Body Flange

Stainless steel 316 / 1.4401

Fill fluid

Silicone oil / Fluorinated oil

Process Connector Gasket

Viton (FKM) Teflon (PTFE)

Amplifier Housing

Aluminium with epoxy resin coat Stainless steel 316

Mounting Bracket

Stainless steel 304 / 1.4301 Carbon steel galvanized

Conduit Connection

M20 x 1.5

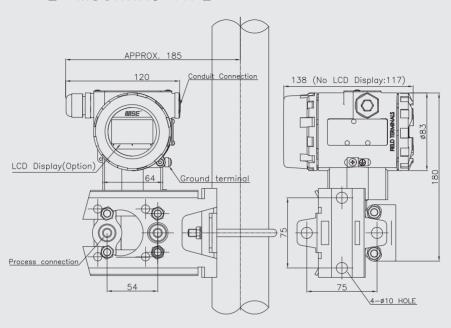
Name plate and tag

Stainless steel 304

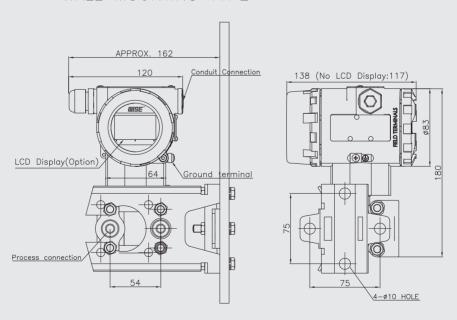
Weight

3.3 kg

Degrees of Protection

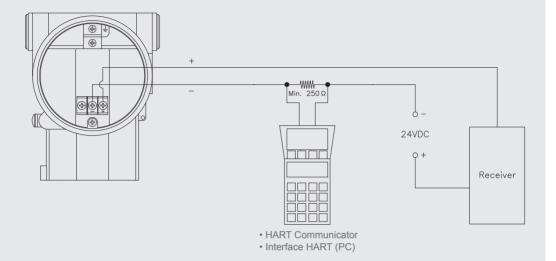

IP66/IP67

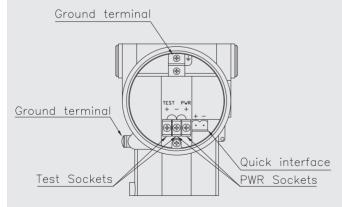
CE conformity EMC directive

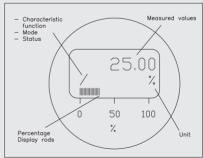

EN 61000-6-2:2005 EN 61000-6-4:2007/A1:2011

SMT2001: Type of Mounting

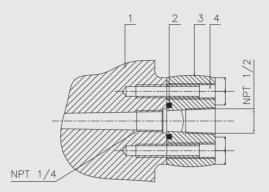
2" MOUNTING TYPE

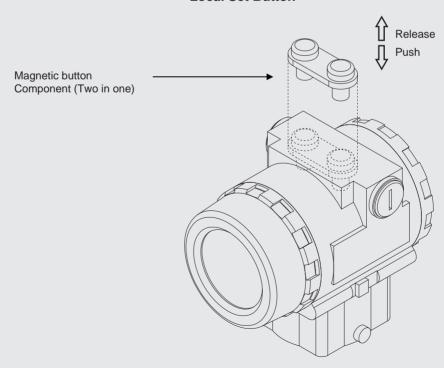

WALL MOUNTING TYPE


SMT2001: Electrical Connection


Electrical Connection Diagram

Terminal Configuration


LCD Display


Process Connection Description

Oval-shaped flange with 1/4-18 NPT female thread (Option)

- Flange
 O-ring
 Oval-shaped flange
 Bolt

Local Set Button

Main order

Ordering information

1. Base model

SMT2001 Differential Pressure Transmitter

2. Measuring Span

- A 1 ~ 10 mbar (Only available accuracy 0.1 %)
 - 2 ~ 60 mbar (Only available accuracy 0.075 %)
- **C** 4 ~ 400 mbar
- **D** 25 ~ 2,500 mbar
- **E** 0.3 ~ 30 bar

3. Accuracy

В

- 5 0.05 % (Only C~E Sensor)
- 7 0.075 % (Only B~E Sensor)
- 1 0.1 % (Only A Sensor)

4. Wetted parted materials (Seal diaphragm/Sensor Body)

- L 316L SS / 316SS
- H Hastelloy C-276 / 316SS
- T 316L SS with Teflon Plated / 316SS
- G 316L SS with Gold Plated / 316SS

5. Indication

- N None
- D Display (LCD)

6. Filled by fluid

- S Silicone oil
- F Fluorinated oil

7. Explosion protection

- N None
- A Ex ia (ATEX)
- B Ex ia (IECEx)
- **D** Ex d (ATEX)
- E Ex d (IECEx)
- F Ex d (KCS)

8. Housing material

- A Aluminium
- **S** 316SS

9. Mounting bracket material

- 5 Carbon steel galvanized
- **4** 304SS
- 0 None
- 9 Other

10. Process connection

- Q Female thread 1/4" 18" NPT (Fixing 7/16" UNF)
- F Female thread 1/2" NPT with Oval Flange

11*. Accessory

- N None
- V Manifold Valve
- O Other
- * Note: Refer to A080's Specification and order valve(A080) separately. It's separate option.

12. Static pressure

- 7 70 bar (Only measuring span A)
- 6 160 bar
- 2 250 bar
- 4 400 bar (Bolt / Nut : Carbon steel)

9

5

10

O

11

N

13. Flange gasket

V Viton

6

S

Ν

Α

L

N

T Teflon

1	2	3
SMT2001	Α	5
12	13	Sample
7	V	ordering code

Gauge pressure transmitter

Model: SMT2002

Spec. sheet no. SD02-02

Service intended

The high performance pressure transmitter SMT2002 is suitable to measure liquid, gas, or steam flow as well as liquid level, density and pressure.

The key features include quick response, remote set-up using communications, self-diagnostics and optional status output for pressure high/low alarm.

Standard features

Accuracy

±0.05 % of calibrated span ±0.075 % of calibrated span

Range limits

6 kPa to 40 MPa

Turn down

Adjustable up to 100:1 range ability

Temperature compensation

High sensitivity temperature sensor packaged in the sensor

Isolating diaphragm

Stainless steel 316L Hastelloy C Stainless steel 316L with Gold Plated

Measurement medium

Gas, steam and liquid

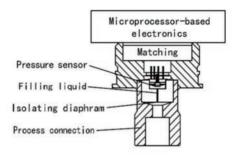
Stability

10 years stability 0.15 % of URL

Output

4 ~ 20 mA with HART protocol

Principle of operation


Main unit includes sensor and Process connection, Works as follows.

The process medium through a flexible, corrosion resistance of the isolation diaphragm and the fill fluid pressure is applied on the measuring silicon pressure chip.

A termination of the chip connected at the atmosphere (for a gauge pressure measurement) or vacuum (for absolute pressure measurement).

When the measured pressure through the measuring diaphragm and the filling liquid is transmitted to the sensor silicon chip, so that the silicon chip of the sensor resistance changes, resulting in change in output voltage of the detection system. this output voltage is proportional to the pressure change. The output is transfer into a standardized signal output by adapter unit and amplifier.

The temperature sensor as a temperature compensated reference value to compensate for the temperature drift.

Main specification

- The gauge pressure transmitter utilize the world's leading high stability silicon sensor, the highest Reference Accuracy is ±0.05 %
- The transmitter allowable over pressure is up 50 MPa with GP sensor H.
- High sensitivity temperature sensor packaged in the sensor. The minimum of the temperature error is ≤ ±0.05 % / 10 K
- Stainless steel 316L and silicone oil filling welded seal structure.
- Long stability is ≤ ±0.1 % / 3 years, 10 years of maintenance-free
- Adjustable up to 100:1 range ability
- The remote seal transmitter utilize ultra-high temperature(400 °C) patented technology.

Performance Specifications

Reference Accuracy of Calibrated Span (includes terminal-based linearity, hysteresis, and repeatability) \pm 0.075 % If TD > 10(TD = URL / SPAN), \pm (0.005 × TD)%

The square root accuracy is 1.5 times of reference accuracy of calibrated span.

Ambient Temperature Effects

-20 \sim 65 °C : \pm (0.2 × TD + 0.05)% × Span Every 10 °C is \pm 0.08 % ×Span (TD=1)

 -40° -20 °C and 65 ~ 85 °C : ±(0.3 × TD + 0.1)% × Span

Overpressure Effects

±0.075 % x Span

Stability

±0.1 % x Span / 3 years

Power Supply Effects

±0.001 % / 10 V (12~42 V DC)

Explosion protection

Ex db IIC T4 / T5 / T6 Gb Ex tb IIIC T80 °C / T90 °C / T130 °C Db Ta = -40°C to +60 °C Ex d IIC T6

Temperature class Max. process temperature

T4 T130 °C 130 °C T5 T90 °C 90 °C T6 T80 °C 80 °C

Functional Specifications

Span and Range Limits

Sensor	В	С	D	E	F	G	Н
Pressure range (bar)	60 mbar	400 mbar	2.5 bar	30 bar	100 bar	210 bar	400 bar
Setting limits (offset and span in this range freely adjustable)	-60 60 mbar	-400 400 mbar	-1 2.5 bar	-1 30 bar	-1 100 bar	-1 210 bar	-1 400 bar
Lowest permissible span	6 mbar	20 mbar	25 mbar	0.3 bar	1 bar	2.1 bar	4 bar
Overpressure limit	2 bar	10 bar	40 bar	150 bar	200 bar	500 bar	500 bar
Range ability turndown (with respect to the differential pressure range)	10:1	20:1	100:1	100:1	100:1	100:1	100:1

Turn-down Accuracy

If the Accuracy is (%): 0.075Turn-down $\leq 10:1 \leq \pm 0.075$ % FSO

Turn-down \(\) 10:1 \(\) \(\) \(\) +80

Turn-down > $10:1 \le \pm [0.075 \text{ x Turn-down}]\% \text{ FSO} \pm 0.075 \%$

Turn-down = Nominal Pressure Range / Adjusted

Zero Adjustment Limits

Zero can be fully elevated or suppressed, within the lower and upper range limits of the capsule.

External Zero Adjustment

External zero is continuously adjustable with 0.01 % incremental resolution of span. Re-range can be done locally using the range setting switch.

Mounting Position Effects

Rotation in diaphragm plane has no effect. Tilting up to 90° will cause zero shift up to 0.25 kPa which can be corrected by the zero adjustment.

Output

2 wire 4~20 mADC output with digital communications, linear or square root programmable. HART FSK protocol are superimposed on the 4~20 mA DC signal. Output range: 3.9 mA to 20.5 mA.

Failure Alarm (the mode can be selected)

Low Alarm Mode (min): 3.7 mA High Alarm Mode (max): 21 mA

Alarm Off (Keep): Keep the effective value before the fault.

- * Complient with NAMUR NE-43
- * Note: The standard setting of failure alarm is High Mode.

Response Time

The amplifier damping constant is 0.1 sec.

The sensor damping constant is 0.1~1.6 sec, it depends on the range and range compression ratio. Amplifier damping time constant is adjustable from 0.1 to 60 sec by software and added to response time.

Warm Up Time

< 15s

Permissible Temperatures

Environment / storage without display : -40 to 85 °C with display : -20 to 65 °C

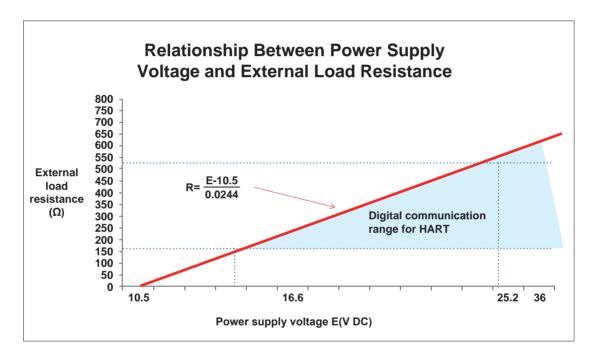
Media wetted parts /Filled oil : -40 to 100 °C

(Info: +125°C short time, max. 30 min.)

HART digital communication and 4 to 20 mA output Power Supply

The transmitter operates from 12 to 42 V DC with no load and is protected against reverse polarity connection Minimum operating voltage increase to 12 V DC with surge protector

Ripple


20 mV max on a 250 Ω load as per HART specifications.

Load limitations

4 to 20 mA and HART total loop resistance :

R (kΩ) =
$$\frac{\text{Supply voltage - min. operating voltage (V DC)}}{22 \text{ mA}}$$

A minimum of 250 Ω is required for HART communication.

Supply and Load Requirements

24 VDC supply, R≤(Us-12 V) / Imax k Ω , Imax = 23 mA.

Maximum voltage limited: 42 VDC

Minimum Voltage limited: 12 VDC without LCD display Minimum Voltage limited: 15 VDC with LCD display

250 Ω to 600 Ω for digital communication

Electrical protection

Short –circuit protection is permanent.

Reverse polarity protection is not damage, but also is no function.

Electrical Connection

The electrical connection is made via cable entry M20x1.5. The screw terminals are suitable for wire cross-sections up to 2.5 mm²

Process Connection

Default Process Connection: 1/2 NPT female thread

Electromagnetic field

Meets all the requirements of EN 61326 and NAMUR NE-21. it can be changed to $\frac{1}{2}$ NPT,G $\frac{1}{2}$,M20x1.5 male thread and KF16 vacuum Connection

Load

Within load/voltage specified limits the total effect is negligible

Install

The transmitter housing can be rotated about 360 degrees relative to the transmitter module without affecting the performance and internal wiring.

Transmitter can be operated Through the PC machine or notebook computer via modem.

Modem can be connected in parallel to the signal circuit at arbitrary point.

The modern communicates with the transmitter through an AC signal superimposed on the 4~20 mA output signals. This modulation does not change in the mean values, so does not affect the measurement signal.

Physical Specifications

Isolating Diaphragm

Stainless steel 316L Hastelloy C Stainless steel 316L with Gold Plated

Amplifier Housing

Aluminium with epoxy resin coat Stainless steel 316

Process Connection

½" NPT (Female)
½" NPT (Male) with Union
M20 x 1.5P (male) with Union
G ½" (male) with Union
DIN 28403 KF16 / ISO 2861
¼" NPT (male) with Union
Others

Mounting Braket

Stainless steel 304 / 1.4301 Carbon steel galvanized

Conduit Connection

M20 x 1.5

Fill fluid

Silicone oil Fluorinated oil

Weight

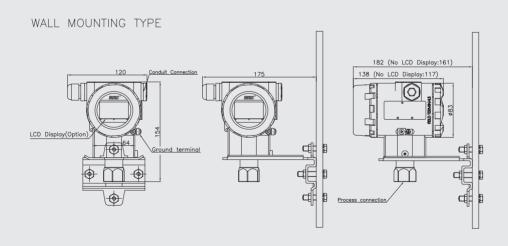
1.6 kg

Name plate and tag

Stainless steel 304

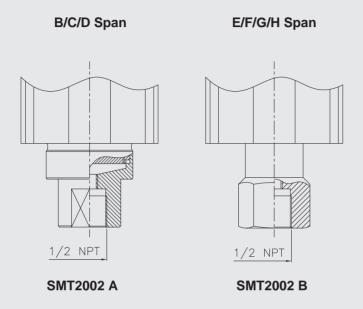
Degrees of Protection

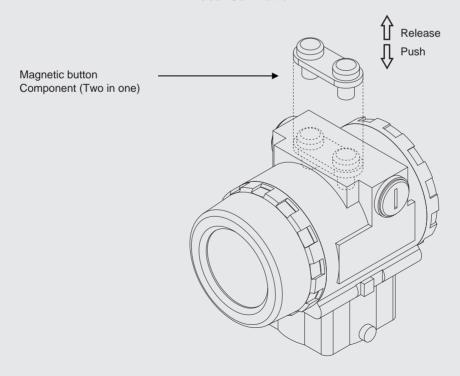
IP66/IP67


CE conformity EMC directive

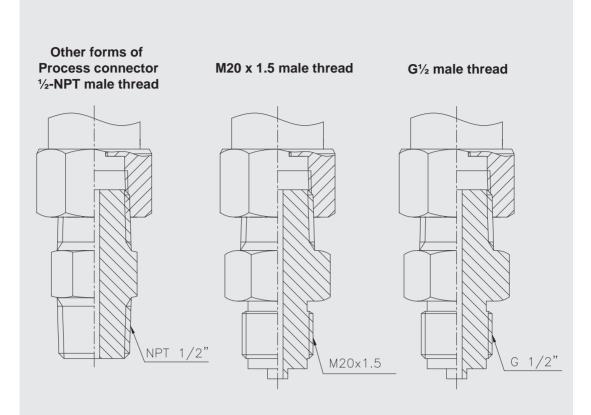
EN 61000-6-2:2005 EN 61000-6-4:2007/A1:2011

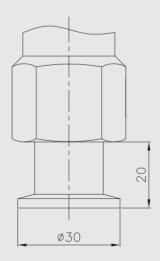
SMT2002: Type of Mounting

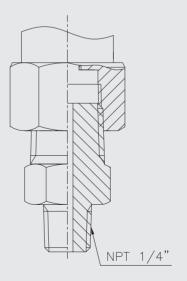




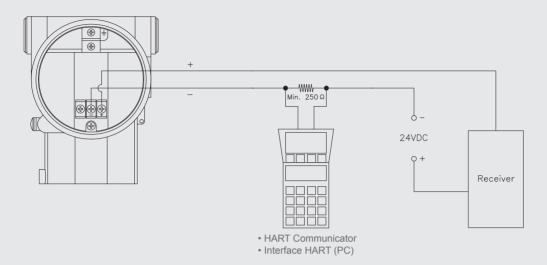
SMT2002: Process Connection

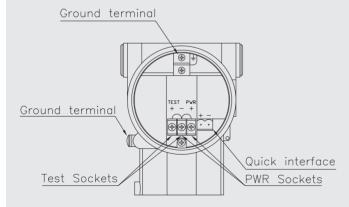

Process Connections Description Default Process Connection

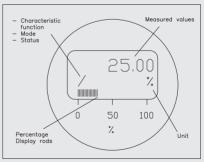

Local Set Button


Unit: mm

Vacuum Connection DIN 28403 KF16 / ISO 2861


1/4-NPT male thread


SMT2002: Electrical Connection


Electrical Connection Diagram

Terminal Configuration

LCD Display

Main order

Ordering information

1. Base model

SMT2002 Gauge Pressure Transmitter

2. Measuring Span

В 6 ~ 60 mbar (Only available accuracy 0.075 %)

С 20 ~ 400 mbar

D 25 ~ 2500 mbar

Ε 0.3 ~ 30 bar F 1 ~ 100 bar

G 2.1 ~ 210 bar

н 4 ~ 400 bar

3. Accuracy

5 0.05 % (Only C~H Sensor)

7 0.075 % (Only B~H Sensor)

4. Indication

Ν None

D Display (LCD)

5. Wetted parted materials (Seal diaphragm/Sensor body)

L 316L SS / 316SS

Н Hastelloy C-276 / 316SS

G 316L SS with Gold Plated / 316SS

6. Filled by fluid

S Silicone oil

F Fluorinated oil

7. Explosion protection

Ν None

Α Ex ia (ATEX)

В Ex ia (IECEx)

D Ex d (ATEX)

Ε Ex d (IECEx)

F Ex d (KCS)

8. Housing material

Α Aluminium

S 316SS

9. Mounting bracket material

5 Carbon steel galvanized

4 304SS

0 None

9 Other

10. Process connection

F 1/2" NPT (Female)

M 1/2" NPT (Male) with Union Р M20 * 1.5 (Male) with Union

G G 1/2" (Male) wtih Union

Q 1/4" NPT (Male) with Union

DIN 28403 KF16 / IOS 2861

Ζ Other

11*. Accessory

K

N None

Manifold valve

0 Other

* Note: Refer to A080's Specification and order valve(A080) separately. It's separate option.

1 SMT2002

2

3

4

5

6

7

8

9

10

11

Sample ordering code

Memo	

Absolute pressure transmitter

Model: SMT2003

Spec. sheet no. SD02-03

Service intended

The high performance pressure transmitter SMT2003 is suitable to measure liquid, gas, or steam flow as well as liquid level, density and pressure.

The key features include quick response, remote set-up using communications, self-diagnostics and optional status output for pressure high/low alarm.

Standard features

Accuracy

±0.05 % of calibrated span ±0.075 % of calibrated span

Range limits

40 kPa ~3 MPa

Turn down

Adjustable up to 100:1 range ability

Temperature compensation

High sensitivity temperature sensor packaged in the sensor

Isolating diaphragm

Stainless steel 316L Hastelloy C Stainless steel 316L with Gold Plated

Measurement medium

Gas, Steam and liquid

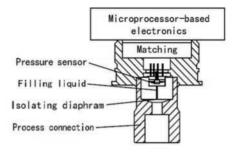
Stability

10 years stability 0.15 % of URL

Output

4 ~ 20 mA with HART protocol

Principle of operation


Main unit includes sensor and Process connection, Works as follows.

The process medium through a flexible, corrosion resistance of the isolation diaphragm and the fill fluid pressure is applied on the measuring silicon pressure chip.

A termination of the chip connected at the atmosphere (for a gauge pressure measurement) or vacuum (for absolute pressure measurement).

The absolute pressure sensor, which is only exposed to the pressure at the high pressure side, acts as a reference value to compensate for the static pressure.

The temperature sensor as a temperature compensated reference value to compensate for the temperature drift.

Main specification

- The gauge pressure transmitter utilize the world's leading high stability silicon sensor, the highest Reference Accuracy is ±0.05 %
- High sensitivity temperature sensor packaged in the sensor. The minimum of the temperature error is $\leq \pm 0.05 \% / 10 \text{ K}$
- Stainless steel 316L and silicone oil filling welded seal structure
- Long stability is ≤ ±0.1 % / 3 years, 10 years of maintenance-free
- Adjustable up to 100:1 range ability
- The remote seal transmitter utilize ultra-high temperature(400 °C) patented technology.

Performance Specifications

Reference Accuracy of Calibrated Span (includes terminal-based linearity, hysteresis, and repeatability) \pm 0.075 % If TD > 10(TD = URL / SPAN), \pm (0.005 × TD)%

The square root accuracy is 1.5 times of reference accuracy of calibrated span.

Ambient Temperature Effects

 $-20 \sim 65$ °C : $\pm (0.2 \times TD + 0.05)\% \times Span$ Every 10 °C is $\pm 0.08 \% \times Span$ (TD=1)

 -40° -20 °C and 65 ~ 85 °C : ±(0.3 × TD + 0.1)% × Span

Overpressure Effects

±0.075 % × Span

Stability

±0.1 % x Span / 3 years

Power Supply Effects

±0.001 % / 10 V (12~42 V DC)

Explosion protection

Ex db IIC T4 / T5 / T6 Gb Ex tb IIIC T80 °C / T90 °C / T130 °C Db Ta = -40 °C to +60 °C Ex d IIC T6

Temperature class Max. process temperature

T4 T130 °C 130 °C T5 T90 °C 90 °C T6 T80 °C 80 °C

Functional Specifications

Span and Range Limits

Sensor	С	D	Е	
Pressure range (bar)	400 mbar	2.5 bar	30 bar	
Setting limits (offset and span in this range freely adjustable)	0 400 mbar	0 2.5 bar	0 30 bar	
Lowest permissible span	20 mbar	25 mbar	0.3 bar	
Overpressure limit	nit 10 bar 40 b		150 bar	
Range ability turndown (with respect to the differential pressure range)	20:1	100:1	100:1	

Turn-down Accuracy

If the Accuracy is (%): 0.075 Turn-down \leq 10:1 \leq ±0.075 % FSO

Turn-down > $10:1 \le \pm [0.075 \text{ x Turn-down}]\% \text{ FSO} \pm 0.075 \%$

Turn-down = Nominal Pressure Range / Adjusted

Zero Adjustment Limits

Zero can be fully elevated or suppressed, within the lower and upper range limits of the capsule.

External Zero Adjustment

External zero is continuously adjustable with 0.01 % incremental resolution of span. Re-range can be done locally using the range setting switch.

Mounting Position Effects

Rotation in diaphragm plane has no effect. Tilting up to 90° will cause zero shift up to 0.25 kPa which can be corrected by the zero adjustment.

Output

2 wire 4~20 mADC output with digital communications, linear or square root programmable. HART FSK protocol are superimposed on the 4~20 mA DC signal. Output range: 3.9 mA to 20.5 mA.

Failure Alarm (the mode can be selected)

Low Alarm Mode (min): 3.7 mA High Alarm Mode (max): 21 mA

Alarm Off (Keep): Keep the effective value before the fault.

- * Complient with NAMUR NE-43
- * Note: The standard setting of failure alarm is High Mode.

Response Time

The amplifier damping constant is 0.1 sec.

The sensor damping constant is 0.1~1.6 sec, it depends on the range and range compression ratio. Amplifier damping time constant is adjustable from 0.1 to 60 sec by software and added to response time.

Warm Up Time

< 15s

Permissible Temperatures

Environment / storage without display : -40 to 85 °C

with display: -20 to 65 °C

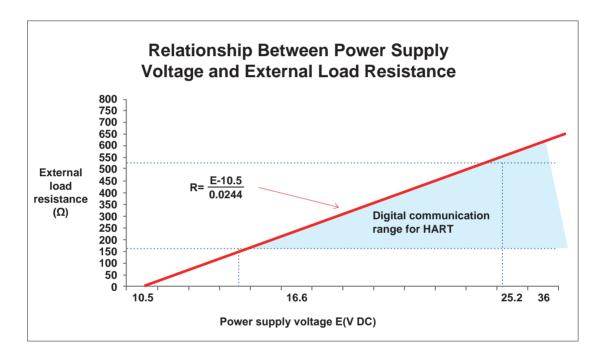
Media wetted parts /Filled oil : -40 to 100 °C

(Info: +125°C short time, max. 30 min.)

HART digital communication and 4 to 20 mA output Power Supply

The transmitter operates from 12 to 42 V DC with no load and is protected against reverse polarity connection Minimum operating voltage increase to 12 V DC with surge protector

Ripple


20 mV max on a 250 Ω load as per HART specifications.

Load limitations

4 to 20 mA and HART total loop resistance :

$$R (k\Omega) = \frac{\text{Supply voltage - min. operating voltage (V DC)}}{22 \text{ mA}}$$

A minimum of 250 Ω is required for HART communication.

Supply and Load Requirements

24 VDC supply, R≤(Us-12 V) / Imax k Ω , Imax = 23 mA.

Maximum voltage limited: 42 VDC

Minimum Voltage limited: 12 VDC without LCD display Minimum Voltage limited: 15 VDC with LCD display

250 Ω to 600 Ω for digital communication

Electrical protection

Short –circuit protection is permanent.

Reverse polarity protection is not damage, but also is no function.

Electrical Connection

The electrical connection is made via cable entry M20x1.5.

The screw terminals are suitable for wire cross-sections up to 2.5 mm².

Process Connection

Default Process Connection: 1/2 NPT female thread

Electromagnetic field

Meets all the requirements of EN 61326 and NAMUR NE-21. it can be changed to ½ NPT,G½,M20x1.5 male thread and KF16 vacuum Connection

Load

Within load/voltage specified limits the total effect is negligible

Install

The transmitter housing can be rotated about 360 degrees relative to the transmitter module without affecting the performance and internal wiring.

Transmitter can be operated Through the PC machine or notebook computer via modem.

Modem can be connected in parallel to the signal circuit at arbitrary point.

The modem communicates with the transmitter through an AC signal superimposed on the 4~20 mA output signals.

This modulation does not change in the mean values, so does not affect the measurement signal.

Physical Specifications

Isolating Diaphragm

Stainless steel 316L Hastelloy C Stainless steel 316L with Gold Plated

Mounting Bracket

stainless steel 304 Carbon steel galvanized

Process Connection

½" NPT (Female)
½" NPT (Male) with Union
M20 x 1.5P (male) with Union
G ½" (male) with Union
DIN 28403 KF16 / ISO 2861
¼" NPT (male) with Union
Others

Conduit Connection

M20 x 1.5

Name plate and tag

Stainless steel 304

Weight

1.6 kg

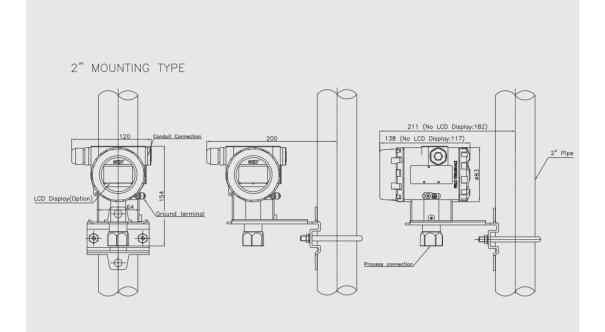
Fill fluid

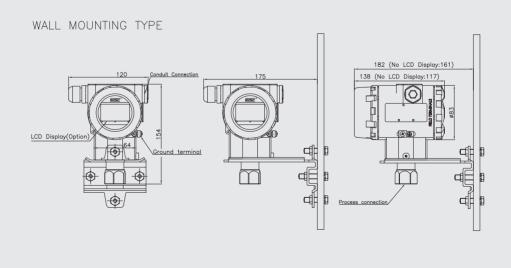
Silicone oil / Fluorinated oil

Degrees of Protection

IP66/IP67

Amplifier Housing

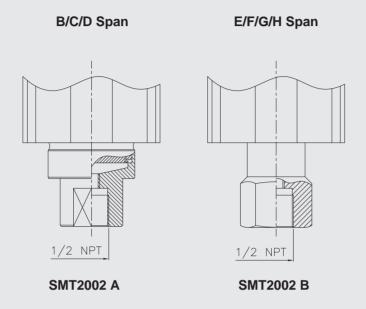

Aluminium with epoxy resin coat Stainless steel 316

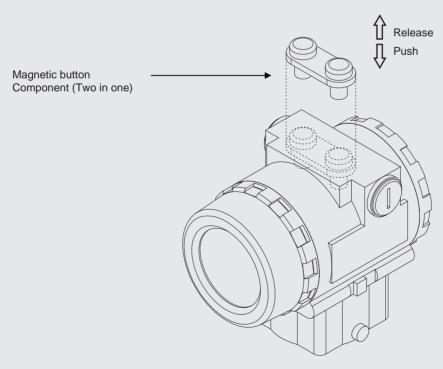


CE conformity EMC directive

EN 61000-6-2:2005 EN 61000-6-4:2007/A1:2011

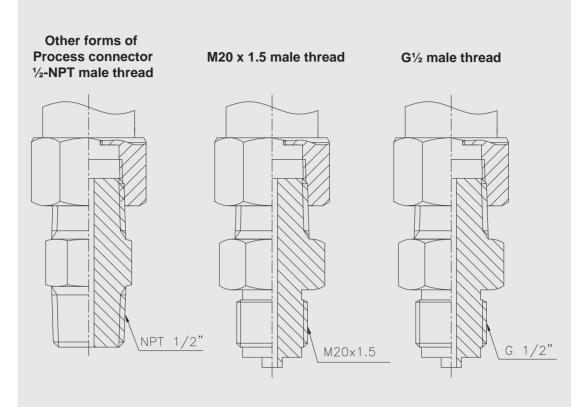
SMT2003: Type of Mounting



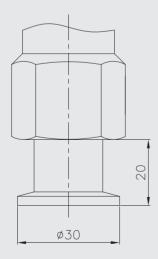


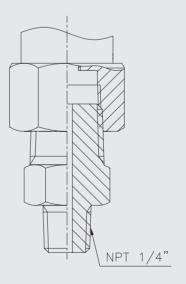
SMT2003: Process Connection

Process Connections Description Default Process Connection

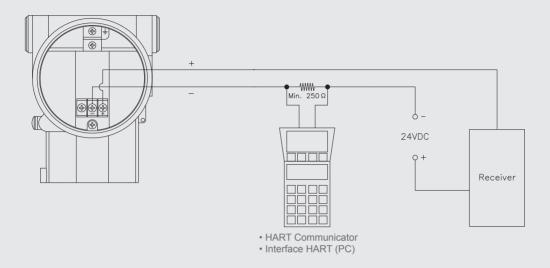


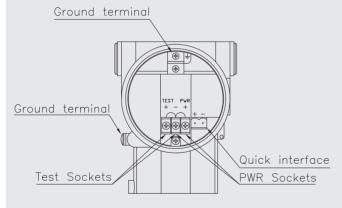
Local Set Button




Unit: mm

Vacuum Connection DIN 28403 KF16 / ISO 2861


1/4-NPT male thread


SMT2003: Electrical Connection


Electrical Connection Diagram

Terminal Configuration

LCD Display

Main order

Ordering information

1. Base model

SMT2003 Absolute Pressure Transmitter

2. Measuring Span

C 20 ~ 400 mbar (Only available accuracy 0.075 %)

D 25 ~ 2500 mbar

E 0.3 ~ 30 bar

3. Accuracy

5 0.05 % (Only D~E Sensor)7 0.075 % (Only C~E Sensor)

4. Indication

N None

D Display (LCD)

5. Wetted parted materials (Seal diaphragm/Sensor body)

L 316L SS / 316SS

H Hastellov C-276 / 316SS

G 316L SS with Gold Plated / 316SS

6. Filled by fluid

S Silicone oil

F Fluorinated oil

7. Explosion protection

N None

A Ex ia (ATEX)

B Ex ia (IECEx)

D Ex d (ATEX)

E Ex d (IECEx)

F Ex d (KCS)

8. Housing material

A Aluminium

S 316SS

9. Mounting bracket material

5 Carbon steel galvanized

4 304SS

0 None

9 Other

10. Process connection

F 1/2" NPT (Female)

M 1/2" NPT (Male) with Union

P M20 * 1.5 (Male) with Union

G G 1/2" (Male) wtih Union

K DIN 28403 KF16 / IOS 2861

Q 1/4" NPT (Male) with Union

Z Other

11*. Accessory

N None

V Manifold valve

O Other

* Note : Refer to A080's Specification and order valve(A080)

separately. It's separate option.

1 2 SMT2003 C

3

4 **N** 5 **L** 6 **S**

7 **N** 8 **A**

A

9 **5**

10 **F** 11 **N** Sample ordering code

Memo

